A FAMILY OF \tilde{A}_n -GROUPS

BY

DONALD I. CARTWRIGHT

School of Mathematics and Statistics, University of Sydney
N.S.W. 2006, Australia
e-mail: donaldc@maths.usyd.edu.au

AND

TIM STEGER

Dipartimento di Matematica e Fisica, Università di Sassari Via Vienna 2, 07100 Sassari, Italy e-mail: steger@ssmain.uniss.it

ABSTRACT

For each integer $n \geq 2$ and for each prime power q, we exhibit a group Γ which acts simply transitively on the set of vertices of the building of type \tilde{A}_n associated with the local field $\mathbb{F}_q((Y))$. This generalizes work in [2] and [8] (where n=2) and in [1] (where $n\leq 4$).

§1. Introduction, notation

When K is a not necessarily commutative field with a discrete valuation v, there is a thick building $\Delta = \tilde{A}_n(K, v)$ of type \tilde{A}_n associated with K (see, e.g., [7]). The group $G = \operatorname{PGL}(n+1,K)$ acts transitively on the set \mathcal{V}_{Δ} of vertices of Δ , and it is natural to ask whether there is a subgroup Γ of G which acts simply transitively on \mathcal{V}_{Δ} . The group G acts on Δ in a "type-rotating" way (see [1], [2]). In general, we call a group acting simply transitively and in a type-rotating way on the vertices of a thick building of type \tilde{A}_n an \tilde{A}_n -group. In this paper, for any integer $n \geq 2$ and for any prime power q, we exhibit \tilde{A}_n -groups $\Gamma \leq G$ when $K = \mathbb{F}_q((Y))$.

In [1], $\tilde{\mathbf{A}}_n$ -groups were characterized by means of the relatively simple presentations (called \tilde{A}_n -triangle presentations) they possess. In [1] and [2], $\tilde{\mathbf{A}}_n$ -groups Γ were found for $n \leq 4$ by first finding $\tilde{\mathbf{A}}_n$ -triangle presentations,

then finding a field K such that the abstract group Γ with this presentation acts simply transitively on the vertices of $\tilde{A}_n(K,v)$. When n=2, Γ might act on a "nonclassical" building Δ , and there is no such K.

In the present paper, we do not use $\tilde{\mathbf{A}}_n$ -triangle presentations, but instead work directly with a certain arithmetic lattice $\tilde{\Gamma}$ in $\mathrm{PGL}(n+1,K)$, and then identify a finite index subgroup Γ of $\tilde{\Gamma}$ which acts simply transitively on the vertices of $\tilde{A}_n(K,v)$. It does not appear possible to write down explicitly the $\tilde{\mathbf{A}}_n$ -triangle presentation of Γ when $n \geq 5$.

It is clear from the results in [1] that for each $n \geq 2$ and each prime power q there can only be a finite number of nonarchimedean local fields K with residual field of order q such that $\tilde{A}_n(K,v)$ admits an \tilde{A}_n -group. When n=2 and q=2 or 3, $K=\mathbb{F}_q(Y)$ and $K=\mathbb{Q}_q$ are the only possibilities [3]. By contrast to the case $K=\mathbb{F}_q(Y)$, we know only a small finite number of examples of p-adic \tilde{A}_n -groups. All possible 2-adic and 3-adic \tilde{A}_2 -groups were found in [3], and examples of 5-adic and 7-adic \tilde{A}_2 -groups are given in [8]. The methods of [8] can be extended slightly to produce an example of a 5-adic \tilde{A}_3 -group.

Let us recall some basic facts about buildings of type \tilde{A}_n . Let $d_{\mathcal{V}}(u,v)$ denote the natural graph distance on \mathcal{V}_{Δ} . If we fix a vertex v_0 of Δ , and let $\Pi(v_0) = \{v \in \mathcal{V}_{\Delta} : d_{\mathcal{V}}(v_0, v) = 1\}$ be the set of neighbours of v_0 , then $\Pi(v_0)$ has a natural incidence structure: if $u, v \in \Pi(v_0)$ are distinct, we call u and v **incident** if u, v and v_0 lie on a common chamber of Δ . This makes $\Pi(v_0)$ a projective geometry, and in the case $\Delta = A_n(K, v)$ which concerns us here, $\Pi(v_0)$ is isomorphic to the projective geometry $\Pi(\mathbf{V})$, the flag complex of an n+1 dimensional vector space V over the residual field k of K. There is a type map $\tau: \mathcal{V}_{\Delta} \to \{0, 1, \dots, n\}$ such that each chamber of Δ contains one vertex of each type. We may assume that v_0 has type 0. The type map τ can be chosen so that the type $\tau(x_U)$ of the vertex $x_U \in \Pi(v_0)$ corresponding to $U \subset \mathbf{V}$ is just dim(U). When $\Delta = A_n(K, v)$, it is easy to give an explicit isomorphism $\Pi(v_0) \to \Pi(\mathbf{V})$: if v_0 is the lattice class $[L_0]$, then $\Pi(v_0)$ consists of the classes [L]of lattices L satisfying $L_0\pi \subseteq L \subseteq L_0$, where $\pi \in K$ and $v(\pi) = 1$, and we can associate to $[L] \in \Pi(v_0)$ the subspace $L/L_0\pi$ of $\mathbf{V} = L_0/L_0\pi$ (which is an n+1dimensional vector space over k). For $g \in GL(n+1,K)$, we set $\tau([gL_0])$ equal to the $i \in \{0, 1, ..., n\}$ satisfying $i = -v(\det(g)) \pmod{n+1}$, and then $\tau([L])$ equals the dimension of $L/L_0\pi$ over k for each $[L] \in \Pi(v_0)$. In this paper, K equals $\mathbb{F}_q((Y))$, where q is a prime power and Y is an indeterminate. We shall always use $L_0 = \mathbb{F}_q[[Y]]^{n+1} \subset \mathbb{F}_q((Y))^{n+1}$ as our base lattice. Recall that the stabilizer of L_0 in $\mathrm{GL}(n+1,\mathbb{F}_q((Y)))$ is $\mathrm{GL}(n+1,\mathbb{F}_q[[Y]])$.

Certain cyclic simple algebras (see, e.g., [4, Chapter 7]) play a central role in this paper, as they did in [1] and [2]. We start with the indeterminate Y. It will be convenient to also use Z=1+Y. Let d=n+1, and let φ denote a generator of the Galois group of \mathbb{F}_{q^d} over \mathbb{F}_q . Thus there is an integer k such that g.c.d.(k,d)=1 and $\varphi(x)=x^{q^k}$ for each $x\in\mathbb{F}_{q^d}$. Note that φ extends naturally to an automorphism of $\mathbb{F}_{q^d}(Y)=\mathbb{F}_{q^d}(Z)$ over $\mathbb{F}_q(Y)=\mathbb{F}_q(Z)$. We form the cyclic simple algebra $\mathcal{A}=\mathbb{F}_{q^d}(Y)[\sigma]$, whose elements may be written uniquely

$$(1.1) x_0 + x_1 \sigma + \dots + x_{d-1} \sigma^{d-1}, \text{where } x_0, \dots, x_{d-1} \in \mathbb{F}_{\sigma^d}(Y),$$

and where multiplication is determined by the rules $\sigma^d = Z$ and $\sigma x \sigma^{-1} = \varphi(x)$ for $x \in \mathbb{F}_{q^d}(Y)$. Now $\mathbb{F}_{q^d}(Y)[\sigma]$ is actually a division algebra, because Z^d is the lowest power of Z which is a norm $N_{\mathbb{F}_{q^d}(Y)/\mathbb{F}_q(Y)}(\xi)$ of some $\xi \in \mathbb{F}_{q^d}(Y)$ (see, for example, [5, p. 84]), though this fact is not used below. Now consider an indeterminate X, and choose any $\beta \in \mathbb{F}_{q^d}$ such that $\mathrm{Tr}_{\mathbb{F}_{q^d}/\mathbb{F}_q}(\beta) = t_1 \neq 0$. Then the norm $N_{\mathbb{F}_{q^d}(X)/\mathbb{F}_q(X)}(1+\beta X)$ equals $1+t_1X+t_2X^2+\cdots+t_dX^d$ for certain other elements t_2,\ldots,t_d of \mathbb{F}_q . We embed $\mathbb{F}_q(Y)$ into $\mathbb{F}_q(X)$ and $\mathbb{F}_{q^d}(Y)$ into $\mathbb{F}_{q^d}(X)$ by mapping Y to $t_1X+t_2X^2+\cdots+t_dX^d$. The algebra $\mathbb{F}_{q^d}(X)[\sigma]\cong \mathcal{A}\otimes \mathbb{F}_q(X)$, whose elements are as in (1.1), but with the x_j 's now in $\mathbb{F}_{q^d}(X)$, splits, i.e., is isomorphic to the algebra $M_{d\times d}(\mathbb{F}_q(X))$ of $d\times d$ matrices over $\mathbb{F}_q(X)$, because Z is now a norm. To give an explicit isomorphism, we modify slightly [1, Section 3] and [2, Section 4], and first define an embedding $\Psi: \mathbb{F}_{q^d}(X)[\sigma] \to M_{d\times d}(\mathbb{F}_{q^d}(X))$ via

$$x \mapsto \Psi(x) = \begin{pmatrix} x & 0 & \dots & 0 \\ 0 & \varphi(x) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \varphi^{d-1}(x) \end{pmatrix} \quad \text{for } x \in \mathbb{F}_{q^d}(X),$$

and

$$\sigma \mapsto \Psi(\sigma) = S = \begin{pmatrix} 0 & 1 + \beta X & 0 & \dots & 0 \\ 0 & 0 & 1 + \varphi(\beta) X & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 + \varphi^{d-2}(\beta) X \\ 1 + \varphi^{d-1}(\beta) X & 0 & 0 & \dots & 0 \end{pmatrix}.$$

Let ξ_0, \ldots, ξ_{d-1} be a basis for \mathbb{F}_{q^d} over \mathbb{F}_q , and let $Q \in \mathrm{GL}(d, \mathbb{F}_{q^d})$ have (i,j)-th entry $\varphi^j(\xi_i)$ for $i,j=0,\ldots,d-1$. The conjugation $M\mapsto QMQ^{-1}$ maps the image of Ψ into $M_{d\times d}(\mathbb{F}_q(X))$, because the (i,j)-th entry of Q^{-1} is $\varphi^i(\eta_j)$, where $\mathrm{Tr}(\xi_i\eta_j)=\delta_{i,j}$. The map $\xi\mapsto Q\Psi(\xi)Q^{-1}$ is an isomorphism $\mathbb{F}_{q^d}(X)[\sigma]\to M_{d\times d}(\mathbb{F}_q(X))$.

There is a natural action of $\operatorname{Aut}(\mathcal{A})$ on Δ . For we can embed \mathcal{A} into $M_{d\times d}(\mathbb{F}_q((Y)))$ by means of the map

$$(1.2) \quad \mathcal{A} \hookrightarrow \mathcal{A} \otimes \mathbb{F}_q(X) \cong M_{d \times d}(\mathbb{F}_q(X)) \hookrightarrow M_{d \times d}(\mathbb{F}_q((X))) \cong M_{d \times d}(\mathbb{F}_q((Y))),$$

where the last isomorphism comes from the fact that $Y \mapsto t_1X + \cdots + t_dX^d$ leads to an isomorphism $\mathbb{F}_q((Y)) \to \mathbb{F}_q((X))$. Now (1.2) embeds the group \mathcal{A}^{\times} of invertible elements of \mathcal{A} into $\mathrm{GL}(d,\mathbb{F}_q((Y)))$. This gives an embedding $\mathcal{A}^{\times}/Z(\mathcal{A}^{\times}) \to \mathrm{PGL}(d,\mathbb{F}_q((Y)))$. Finally, $\mathrm{Aut}(\mathcal{A}) \cong \mathcal{A}^{\times}/Z(\mathcal{A}^{\times})$ by the Skolem-Noether Theorem (see [4, p. 263]), which states that each $\alpha \in \mathrm{Aut}(\mathcal{A})$ is of the form $x \mapsto axa^{-1}$ for some $a \in \mathcal{A}^{\times}$. Thus we get an embedding of $\mathrm{Aut}(\mathcal{A})$ into $\mathrm{PGL}(d,\mathbb{F}_q((Y)))$, which acts on Δ in the natural way.

§2. A subgroup of Aut(A) acting simply transitively

As above, fix a basis ξ_0, \ldots, ξ_{d-1} for \mathbb{F}_{q^d} over \mathbb{F}_q . Then

$$\xi_0, \dots, \xi_{d-1}, \xi_0 \sigma, \dots, \xi_{d-1} \sigma, \dots, \xi_0 \sigma^{d-1}, \dots, \xi_{d-1} \sigma^{d-1}$$

is an ordered basis of \mathcal{A} over $\mathbb{F}_q(Y)$.

Definition: Let $\tilde{\Gamma}$ denote the set of automorphisms α of \mathcal{A} whose matrix with respect to this basis has entries in

$$\mathbb{F}_q\left[\frac{1}{Y}\right] = \mathbb{F}_q\left[\frac{1}{Z-1}\right].$$

Let Γ denote the set of $\alpha \in \tilde{\Gamma}$ such that for each $i, j = 0, \ldots, d-1$, $\alpha(\xi_i \sigma^j) = \xi_i \sigma^j + \sum_{k=0}^{j-1} t_k \sigma^k \pmod{1/Y}$, where the t_k 's are in \mathbb{F}_{q^d} .

If $\alpha \in \tilde{\Gamma}$, then $\alpha \in \Gamma$ means that its matrix with respect to the basis has the form

$$\begin{pmatrix} I & A_{1,2} & A_{1,3} & \cdots & A_{1,d} \\ 0 & I & A_{2,3} & \cdots & A_{2,d} \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ 0 & 0 & \cdots & I & A_{d-1,d} \\ 0 & 0 & \cdots & 0 & I \end{pmatrix} \quad \text{modulo } \frac{1}{Y},$$

where the I's are $d \times d$ identity matrices, and the $A_{i,j}$ are $d \times d$ matrices with entries in \mathbb{F}_q .

Note that $\tilde{\Gamma}$ is a subgroup of $\operatorname{Aut}(\mathcal{A})$. For if $\alpha \in \operatorname{Aut}(\mathcal{A})$, then, regarded as a $\mathbb{F}_q(Y)$ -linear map, the determinant of α is 1. For there is an $a \in \mathcal{A}^{\times}$ such that $\alpha(x) = axa^{-1}$ for all x. Let $A \in \operatorname{GL}(d, \mathbb{F}_q(Y))$ correspond to a under

the mapping (1.2). Then α extends to the composition of the maps $M \mapsto AM$ and $M \mapsto MA^{-1}$ on $M_{d\times d}(\mathbb{F}_q((Y)))$, and these maps have determinant $\det(A)^d$ and $\det(A)^{-d}$, respectively. It is routine to check that Γ is a subgroup of $\tilde{\Gamma}$.

The following element of A will be important for us:

$$b_1 = \sum_{j=0}^{d-1} \sigma^{-j} = 1 + \frac{1}{Z} \sum_{j=1}^{d-1} \sigma^j.$$

Calculating $b_1(1-\sigma^{-1})$, we easily see that

$$b_1 = \frac{Z - 1}{Z} (1 - \sigma^{-1})^{-1}.$$

When $u \in \mathbb{F}_{a^d}^{\times}$, we denote by b_u the conjugate ub_1u^{-1} of b_1 by u.

LEMMA 2.1: For each $u \in \mathbb{F}_{q^d}^{\times}$, conjugation by b_u is an element of Γ . The norm of b_u in \mathcal{A} is $((Z-1)/Z)^{d-1}$.

Proof: We must calculate $b_u \xi_i \sigma^j b_u^{-1}$. For $\xi \in \mathbb{F}_{q^d}$,

$$b_1 \xi b_1^{-1} = \left(\sum_{k=0}^{d-1} \sigma^{-k}\right) \xi \frac{Z}{Z-1} (1 - \sigma^{-1})$$

$$= \xi + \frac{1}{Z-1} \left\{ \left(\xi - \varphi(\xi)\right) + (\varphi^{-1}(\xi) - \xi)\sigma^{d-1} + \cdots + (\varphi^{-(d-1)}(\xi) - \varphi^{-(d-2)}(\xi))\sigma \right\}.$$

Using the fact that σ and b_1 commute, we therefore have

$$b_{u}\xi\sigma^{j}b_{u}^{-1} = u\left(b_{1}u^{-1}\xi\varphi^{j}(u)b_{1}^{-1}\right)\sigma^{j}u^{-1}$$

$$= u\left(u^{-1}\xi\varphi^{j}(u) + \frac{1}{Z-1}\sum_{k=0}^{d-1}t_{k}\sigma^{k}\right)\sigma^{j}u^{-1}$$

$$= \xi\sigma^{j} + \frac{1}{Z-1}\sum_{k=0}^{d-1}ut_{k}\varphi^{k+j}(u^{-1})\sigma^{k+j}$$

for certain $t_k \in \mathbb{F}_{q^d}$. Thus for $j \le \ell \le d-1$ we get the term

$$\frac{1}{Z-1}ut_{\ell-j}\varphi^{\ell}(u^{-1})\sigma^{\ell} \equiv 0 \pmod{1/Y}$$

on the right, while for $0 \le \ell \le j-1$ we get the term

$$\frac{Z}{Z-1}ut_{d+\ell-j}\varphi^{\ell}(u^{-1})\sigma^{\ell} \equiv ut_{d+\ell-j}\varphi^{\ell}(u^{-1})\sigma^{\ell} \pmod{1/Y}.$$

It follows that conjugation by b_u is in Γ .

To calculate the norm $N(b_1)$ of b_1 , let g_1 denote the image of b_1 in $GL(d, \mathbb{F}_q((Y)))$ under the embedding (1.2). Then g_1^{-1} is a conjugate of $\frac{Z}{Z-1}(I-S^{-1})$. It is easy to calculate that $\det(I-S^{-1})=1-1/Z$, and so $N(b_1)=\det(g_1)=((Z-1)/Z)^{d-1}$.

LEMMA 2.2: For $u \in \mathbb{F}_{q^d}^{\times}$, let $g_u \in \mathrm{GL}(d, \mathbb{F}_q((Y)))$ be the image of $b_u = ub_1u^{-1} \in \mathcal{A}$ under the embedding (1.2). Let v_0 be the standard base vertex of the \tilde{A}_n building Δ associated with $\mathbb{F}_q((Y))$. Then the type 1 neighbours of v_0 in Δ are precisely the vertices g_uv_0 , $u \in \mathbb{F}_{q^d}^{\times}$, and $g_uv_0 = g_{u'}v_0$ if and only if u = u' modulo \mathbb{F}_q^{\times} .

Proof: The vertex v_0 is the equivalence class $[L_0]$ of the lattice $L_0 = \mathbb{F}_q[[Y]]^d \subset \mathbb{F}_q((Y))^d$. As $b_1 = Z^{-1}(Z + \sigma + \cdots + \sigma^{d-1})$, and the image of σ is QSQ^{-1} , which has entries in $\mathbb{F}_q[X]$, we see that g_1 has entries in $Z^{-1}\mathbb{F}_q[X] \subset \mathbb{F}_q[[Y]]$, and so $g_1L_0 \subset L_0$. Also, $(Z-1)b_1^{-1} = Z(1-\sigma^{-1}) = Z-\sigma^{d-1}$. So $Yg_1^{-1} = (Z-1)g_1^{-1}$ has entries in $\mathbb{F}_q[X] \subset \mathbb{F}_q[[Y]]$. Hence $Yg_1^{-1}L_0 \subset L_0$. Thus $YL_0 \subset g_1L_0 \subset L_0$. Moreover, $\det(g_u) = \det(g_1) = N(b_1) = ((Z-1)/Z)^{d-1}$, the valuation of which is d-1. So the vertex $g_uv_0 = [g_uL_0]$ is a neighbour of v_0 of type 1.

Suppose that $g_u v_0 = g_1 v_0$. Then $g_1^{-1} g_u$ must be a scalar multiple of an element of $GL(d, \mathbb{F}_q[[Y]])$. But $g_1^{-1} g_u$ has determinant 1, which has valuation 0. Thus $g_1^{-1} g_u \in GL(d, \mathbb{F}_q[[Y]])$. But $g_1^{-1} g_u$ is the image of

$$b_1^{-1}ub_1u^{-1} = \frac{Z}{Z-1}(1-\sigma^{-1})u(1+\sigma^{-1}+\cdots+\sigma^{-(d-1)})u^{-1}$$

$$= \frac{Z}{Z-1}(u-\varphi^{-1}(u)\sigma^{-1})(1+\sigma^{-1}+\cdots+\sigma^{-(d-1)})u^{-1}$$

$$= \varphi^{-1}(u)/u + (u-\varphi^{-1}(u))\frac{Z}{Z-1}b_1u^{-1}.$$

The image in $GL(d, \mathbb{F}_q((Y)))$ of

$$\frac{Z}{Z-1}b_1 = \frac{1}{Z-1}(Z+\sigma+\cdots+\sigma^{d-1})$$

is the conjugate by Q of $\frac{1}{Z-1}(ZI+S+\cdots+S^{d-1})$, which has diagonal entries $Z/(Z-1) \notin \mathbb{F}_q[[Z-1]] = \mathbb{F}_q[[Y]]$. Thus $g_1^{-1}g_u$ cannot be in $\mathrm{GL}(d,\mathbb{F}_q[[Y]])$ unless $u-\varphi^{-1}(u)=0$; that is, unless $u\in\mathbb{F}_q$. The result is now clear.

LEMMA 2.3: The group Γ acts transitively on the set \mathcal{V}_{Δ} of vertices of Δ .

Proof: Lemma 2.2 shows that each vertex x of Δ satisfying $d(x, v_0) = 1$ and $\tau(x) = 1$ can be written $x = gv_0$, where $g \in \mathrm{PGL}(d, \mathbb{F}_q(Y))$ is in the image

of Γ . We next show by induction on i that the same is true for each vertex x satisfying $d(x,v_0)=1$ and $\tau(x)=i$. Assuming this for i-1 in place of i, and given x satisfying $d(x,v_0)=1$ and $\tau(x)=i$, we can choose a vertex x' satisfying $d(x',v_0)=1$, d(x',x)=1 and $\tau(x')=i-1$. We can write $x'=g'v_0$, where $g'\in \mathrm{PGL}(d,\mathbb{F}_q((Y)))$ is in the image of Γ . Then $d((g')^{-1}x,v_0)=d(x,g'v_0)=1$ and $\tau((g')^{-1}x)=1$, and so $(g')^{-1}x=g_uv_0$ for some $u\in\mathbb{F}_{q^d}^{\times}$. Thus $x=g'g_uv_0$ is of the desired form.

It is then easy to see by induction on $d(x, v_0)$ that each vertex x of Δ can be written $x = gv_0$, where $g \in \mathrm{PGL}(d, \mathbb{F}_q((Y)))$ is in the image of Γ . This proves the lemma.

We next describe the stabilizer of the vertex v_0 in Aut(A) and in $\tilde{\Gamma}$.

LEMMA 2.4: Let $\alpha \in \operatorname{Aut}(\mathcal{A})$. Then α fixes the vertex v_0 if and only if it is conjugation by an element $a \in \mathcal{A}^{\times}$ which can be chosen so that $a = a_0 + \cdots + a_{d-1}\sigma^{d-1}$ and $a^{-1} = a'_0 + \cdots + a'_{d-1}\sigma^{d-1}$, where all the a_j 's and a'_j 's are in $\mathbb{F}_{q^d}[Y]$ (as well as in $\mathbb{F}_{q^d}(Y)$).

Proof: Pick any $a \in \mathcal{A}^{\times}$ such that α is conjugation by a. Suppose that $A \in \operatorname{GL}(d,\mathbb{F}_q((Y)))$ corresponds to a under the embedding (1.2). By assumption, α fixes v_0 . This means that $[AL_0] = [L_0]$, and so $AL_0 = Y^kL_0$ for some $k \in \mathbb{Z}$. Replacing a by $Y^{-k}a$, we can assume that $AL_0 = L_0$. Thus $A \in \operatorname{GL}(d,\mathbb{F}_q[[Y]])$. Write $a = a_0 + a_1\sigma + \dots + a_{d-1}\sigma^{d-1}$. Then $A = Q(A_0 + A_1S + \dots + A_{d-1}S^{d-1})Q^{-1}$, where $A_j = \Psi(a_j)$ and $S = \Psi(\sigma)$, in the notation of Section 1. As $Q \in \operatorname{GL}(d,\mathbb{F}_{q^d})$, the entries of $A_0 + A_1S + \dots + A_{d-1}S^{d-1}$ must be in $\mathbb{F}_{q^d}[[Y]]$. Now S, \dots, S^{d-1} have diagonal entries all 0. So A_0 has diagonal entries in $\mathbb{F}_{q^d}[[Y]]$. In particular, the (1,1) entry, a_0 , is in $\mathbb{F}_{q^d}[[Y]]$. Using the fact that $S \in \operatorname{GL}(d,\mathbb{F}_{q^d}[[Y]])$, we can easily see in a similar way that a_1, \dots, a_{d-1} are all in $\mathbb{F}_{q^d}[[Y]]$. Writing $a^{-1} = a'_0 + \dots + a'_{d-1}\sigma^{d-1}$, we have $A^{-1} = Q(A'_0 + A'_1S + \dots + A'_{d-1}S^{d-1})Q^{-1}$, where $A'_j = \Psi(a'_j)$, and we find that a'_0, \dots, a'_{d-1} are also all in $\mathbb{F}_{q^d}[[Y]]$ for the same reasons.

Conversely, if all the a_j 's and a'_j 's are in $\mathbb{F}_{q^d}[[Y]]$, then it is clear that both A and A^{-1} have entries in $\mathbb{F}_q[[Y]]$, and so α fixes v_0 .

LEMMA 2.5: Let $\alpha \in \tilde{\Gamma}$. Then α fixes the vertex v_0 if and only if α is conjugation by an element of the form $\theta \sigma^j$, where $\theta \in \mathbb{F}_{q^d}^{\times}$.

Proof: It is clear that if α is conjugation by $\theta \sigma^j$, where $\theta \in \mathbb{F}_{q^d}^{\times}$, then $\alpha \in \tilde{\Gamma}$ and α fixes v_0 . Conversely, suppose that $\alpha \in \tilde{\Gamma}$ fixes v_0 . Then α is conjugation by an element $a \in \mathcal{A}^{\times}$ as in Lemma 2.4. If a_r is the first of the coefficients a_j which is nonzero, then composing α with conjugation by σ^{-r} , we may suppose that

r=0. In addition, for each $i, j=0,\ldots,d-1$, $a\xi_i\sigma^ja^{-1}$ must be a $\mathbb{F}_q[1/Y]$ -linear combination of the $\xi_k\sigma^\ell$'s, and so an $\mathbb{F}_{q^d}[1/Y]$ -linear combination of the σ^ℓ 's. To find the coefficient of σ^ℓ in

$$a\xi\sigma^{j}a^{-1} = (a_{0} + \dots + a_{d-1}\sigma^{d-1})\xi\sigma^{j}(a'_{0} + \dots + a'_{d-1}\sigma^{d-1})$$

$$= (a_{0}\xi + a_{1}\varphi(\xi)\sigma + \dots + a_{d-1}\varphi^{d-1}(\xi)\sigma^{d-1})$$

$$\times (\varphi^{j}(a'_{0})\sigma^{j} + \dots + \varphi^{j}(a'_{d-1})\sigma^{j+d-1}),$$

for each $r \in \{0, \ldots, d-1\}$ we pick the term $a_r \varphi^r(\xi) \sigma^r$ in the first factor, we multiply it by the unique term $\varphi^j(a_k') \sigma^{j+k}$ of the second factor for which $r+j+k \equiv \ell \mod d$, and then we sum over r. We thus find that the coefficient of σ^ℓ is of the form

$$\sum_{r=0}^{d-1} \varphi^r(\xi) c_r.$$

By hypothesis, this is in $\mathbb{F}_{q^d}[1/Y]$ for each $\xi = \xi_i$, $i = 0, \ldots, d-1$. So if **c** is the column vector with entries c_0, \ldots, c_{d-1} , then $Q\mathbf{c}$ has entries in $\mathbb{F}_{q^d}[1/Y]$. But $Q \in \mathrm{GL}(d, \mathbb{F}_{q^d})$, and so **c** has entries in $\mathbb{F}_{q^d}[1/Y]$. Clearly

$$c_r = \begin{cases} a_r \varphi^{r+j} (a'_{\ell-r-j}) & \text{if } r+j \leq \ell, \\ Z a_r \varphi^{r+j} (a'_{d+\ell-r-j}) & \text{if } \ell < r+j \leq d+\ell, \\ Z^2 a_r \varphi^{r+j} (a'_{2d+\ell-r-j}) & \text{if } d+\ell < r+j \leq 2d+\ell. \end{cases}$$

Recall that $a_0 \neq 0$. We claim that $a_1' = \cdots = a_{d-1}' = 0$. Fix $k \in \{1, \ldots, d-1\}$. Taking r = 0 and $\ell = j + k$ for $j = 0, \ldots, d-k-1$, we see that

$$a_0a'_k, a_0\varphi(a'_k), \dots, a_0\varphi^{d-k-1}(a'_k) \in \mathbb{F}_{q^d}[1/Y].$$

But a_0 and a_k' are in $\mathbb{F}_{q^d}[[Y]]$, and as $\mathbb{F}_{q^d}[[Y]] \cap \mathbb{F}_{q^d}[1/Y] = \mathbb{F}_{q^d}$, we have

(2.1)
$$a_0 a'_k, a_0 \varphi(a'_k), \dots, a_0 \varphi^{d-k-1}(a'_k) \in \mathbb{F}_{q^d}.$$

Suppose that $a'_k \neq 0$. Suppose at first that $k \leq d-2$. Then $a_0 a'_k, a_0 \varphi(a'_k) \in \mathbb{F}_{q^d}$, so that $\varphi(a'_k)/a'_k \in \mathbb{F}_{q^d}$. As $a'_k \in \mathbb{F}_{q^d}[[Y]]$, this forces a'_k to equal $\theta_k \tilde{a}_k$ for some $\theta_k \in \mathbb{F}_{q^d}$ and $\tilde{a}_k \in \mathbb{F}_q[[Y]]$. Hence $a_0 \tilde{a}_k \in \mathbb{F}_{q^d}$. Next, taking r = 0, and $\ell = j + k - d$ for $j = d - k, \ldots, d - 1$, we similarly see that

(2.2)
$$Za_0\varphi^{d-k}(a'_k),\ldots,Za_0\varphi^{d-1}(a'_k)\in\mathbb{F}_{q^d},$$

and so $Za_0\varphi^{d-k}(\theta_k)\tilde{a}_k \in \mathbb{F}_{q^d}$, and hence $Za_0\tilde{a}_k \in \mathbb{F}_{q^d}$. But $a_0\tilde{a}_k \in \mathbb{F}_{q^d}$, and so we have a contradiction. When k=d-1, we use (2.2) to see that $a'_k = \theta_k\tilde{a}_k$

for some $\theta_k \in \mathbb{F}_{q^d}$ and $\tilde{a}_k \in \mathbb{F}_q[[Y]]$, and then (2.1) yields a contradiction. Thus $a'_1 = \cdots = a'_{d-1} = 0$.

Hence $a^{-1} = a'_0 \in \mathbb{F}_{q^d}(Y)$. Thus $a \in \mathbb{F}_{q^d}(Y)$, so that $a_1 = \cdots = a_{d-1} = 0$. As $\alpha \in \tilde{\Gamma}$, $a\xi_i\sigma^ja^{-1} = a_0\varphi^j(a_0^{-1})\xi_i\sigma^j$ is an $\mathbb{F}_{q^d}[1/Y]$ -multiple of σ^j . But $a_0^{-1} = a'_0 \in \mathbb{F}_{q^d}[[Y]]$, and so $a_0\varphi^j(a_0^{-1})\xi_i \in \mathbb{F}_{q^d}[1/Y] \cap \mathbb{F}_{q^d}[[Y]] = \mathbb{F}_{q^d}$. As above, we have $a_0 = \theta\tilde{a}_0$, where $\tilde{a}_0 \in \mathbb{F}_q[[Y]]$ and $\theta \in \mathbb{F}_{q^d}$. As \tilde{a}_0 belongs to the centre of A, α is also conjugation by θ .

THEOREM 2.6: The group Γ acts simply transitively on the set \mathcal{V}_{Δ} of vertices of the \tilde{A}_n -building Δ associated with $\mathbb{F}_q((Y))$. Moreover, Γ is a normal subgroup of $\tilde{\Gamma}$ of index $d(q^d-1)/(q-1)$.

Proof: To prove the first statement, we need only check that if $\theta \in \mathbb{F}_{q^d}^{\times}$, $j \in \{0,\ldots,d-1\}$, and if conjugation α by $\theta\sigma^j$ belongs to Γ , then j=0 and $\theta \in \mathbb{F}_q$ (so that α is the identity automorphism). But $\alpha \in \Gamma$ implies that $\alpha(\xi) \equiv \xi \pmod{1/Y}$ for each $\xi \in \mathbb{F}_{q^d}$. But $\alpha(\xi) - \xi = \varphi^j(\xi) - \xi$, which can be zero mod 1/Y only if it is zero, and if this holds for all ξ , then j=0. Also, $\alpha \in \Gamma$ implies that $\alpha(\sigma) - \sigma \in \mathbb{F}_{q^d} \pmod{1/Y}$. This means that $(\theta\varphi(\theta^{-1}) - 1)\sigma \in \mathbb{F}_{q^d}$, which can only happen if $\theta = \varphi(\theta)$, that is, if $\theta \in \mathbb{F}_q$.

As Γ acts transitively on \mathcal{V}_{Δ} , we know that $\tilde{\Gamma} = \Gamma H$, where H is the stabilizer of v_0 in $\tilde{\Gamma}$. Now conjugation by $\theta \sigma^j$ equals conjugation by $\theta' \sigma^{j'}$ if and only if $\theta = \theta' \pmod{\mathbb{F}_q^{\chi}}$ and j = j'. Hence $|H| = d(q^d - 1)/(q - 1)$. We saw above that $\Gamma \cap H = \{\mathrm{id}\}$, and so Γ has index $d(q^d - 1)/(q - 1)$ in $\tilde{\Gamma}$. One can easily check that conjugation by σ or by any $\theta \in \mathbb{F}_{q^d}^{\chi}$ normalizes Γ . Hence Γ is normal in $\tilde{\Gamma}$.

§3. The isomorphism $\Pi(\mathbb{F}_{q^d}) \to \Pi(v_0)$

Recall that the projective geometry $\Pi(v_0)$ of neighbours of v_0 in the $\tilde{\mathbf{A}}_n$ -building associated to $\mathbb{F}_q((Y))$ is isomorphic to the flag complex $\Pi(\mathbf{V})$ of a d-dimensional vector space \mathbf{V} over \mathbb{F}_q . We may take $\mathbf{V} = \mathbb{F}_{q^d}$, and in this section, for each $U \in \Pi(\mathbb{F}_{q^d})$, we find explicit elements b_U of \mathcal{A} such that $U \to b_U.v_0$ is an isomorphism $\Pi(\mathbb{F}_{q^d}) \to \Pi(v_0)$.

For $k=1,\ldots,n$, let $\Pi_k(\mathbb{F}_{q^d})$ denote the set of k-dimensional subspaces of \mathbb{F}_{q^d} . Let $U\in\Pi_k(\mathbb{F}_{q^d})$, let u_1,\ldots,u_k be a basis of U, and let m_1,\ldots,m_k be integers. Let $[U;m_1,\ldots,m_k]$ denote the determinant of the $k\times k$ matrix whose (i,j)-th entry is $\varphi^{m_j}(u_i)$. Let u'_1,\ldots,u'_k be another basis of U. Write $u'_j=\sum_{i=1}^d t_{i,j}u_i$, where $t_{i,j}\in\mathbb{F}_q$ for each i,j. Then the determinant of the $k\times k$ matrix whose (i,j)-th entry is $\varphi^{m_j}(u'_i)$ is $t[U;m_1,\ldots,m_k]$, where $t=\det(t_{i,j})$. Note that $0\neq t\in\mathbb{F}_q$. Hence $[U;m_1,\ldots,m_k]$ is independent, modulo \mathbb{F}_q^{\times} , of

the choice of the basis u_1, \ldots, u_k of U. Moreover, if $[U; m_1, \ldots, m_k] \neq 0$, and if n_1, \ldots, n_k are integers, then $[U; n_1, \ldots, n_k]/[U; m_1, \ldots, m_k]$, where both numerator and denominator are calculated using the same basis for U, is independent of that basis.

LEMMA 3.1: If $U \in \Pi_k(\mathbb{F}_{q^d})$, then $[U; 0, -1, \dots, -(k-1)] \neq 0$.

Proof: This is obvious if k=1. When k=2, let u_1,u_2 be a basis for U. Then $[U;0,-1]=u_1\varphi^{-1}(u_2)-\varphi^{-1}(u_1)u_2$. If this is 0, then $\varphi^{-1}(u_2/u_1)=u_2/u_1$, which implies that $u_2/u_1\in \mathbb{F}_q$, which is impossible. Now let k>2, and assume the result for k-1. Let u_1,u_2,\ldots,u_k be a basis for some $U\in \Pi_k(\mathbb{F}_{q^d})$. Suppose that $[U;0,-1,\ldots,-(k-1)]=0$. Then $\det(A)=0$, where A is the $k\times k$ matrix whose (i,j)-th entry is $\varphi^{-(i-1)}(u_j)$. Subtract $u_1/\varphi^{-1}(u_1)$ times row 2 from row 1, then $\varphi^{-1}(u_1)/\varphi^{-2}(u_1)$ times row 3 from row 2, etc. This results in a matrix all of whose entries in the first column are 0, except the last, $\varphi^{-(k-1)}(u_1)$. So $0=\det(A)=(-1)^{k-1}\varphi^{-(k-1)}(u_1)\det(B)$, where B is the $(k-1)\times(k-1)$ -matrix whose (i,j)-th entry is $\varphi^{-(i-1)}(u'_{j+1})$, where $u'_j=u_j-(u_1/\varphi^{-1}(u_1))\varphi^{-1}(u_j)$. Thus $\det(B)=0$, and the induction hypothesis implies that $u'_k=a_2u'_2+\cdots+a_{k-1}u'_{k-1}$ for some $a_2,\ldots,a_{k-1}\in \mathbb{F}_q$. Thus

$$u_1 \varphi^{-1} \left(u_k - \sum_{j=2}^{k-1} a_j u_j \right) - \varphi^{-1} (u_1) \left(u_k - \sum_{j=2}^{k-1} a_j u_j \right) = 0,$$

and so by the k=2 case we must have $u_k-\sum_{j=2}^{k-1}a_ju_j=a_1u_1$ for some $a_1\in\mathbb{F}_q$. This is a contradiction.

Now let $U \in \Pi_k(\mathbb{F}_{q^d})$. By Lemma 3.1 we can form the following element b_U of \mathcal{A} :

(3.1)
$$b_U = \sum_{j=0}^{d-1} \sigma^{-j} \frac{[U; j, -1, \dots, -(k-1)]}{[U; 0, -1, \dots, -(k-1)]}.$$

When $U = \mathbb{F}_q u$ is one-dimensional, then b_U equals the b_u used in the last section:

$$b_U = \sum_{j=0}^{d-1} \sigma^{-j} \frac{\varphi^j(u)}{u} = u \left(\sum_{j=0}^{d-1} \sigma^{-j} \right) u^{-1} = u b_1 u^{-1} = b_u.$$

Notice also that in (3.1), the coefficient of σ^{-j} is zero for $j=d-k+1,\ldots,d-1$.

LEMMA 3.2: Let $U \in \Pi_k(\mathbb{F}_{q^d})$ and $W \in \Pi_{k+1}(\mathbb{F}_{q^d})$, with $U \subset W$. Then

$$(3.2) b_W = \frac{Z}{Z-1} b_U b_y$$

for (modulo \mathbb{F}_q^{\times})

$$(3.3) y = [W; 0, -1, \dots, -k]/[U; -1, \dots, -k].$$

Proof: For any $y \in \mathbb{F}_q^{\times}$, we have $b_y = yb_1y^{-1}$, and so

$$b_y^{-1} = yb_1^{-1}y^{-1} = \frac{Z}{Z-1}y(1-\sigma^{-1})y^{-1} = \frac{Z}{Z-1}\Big(1-\sigma^{-1}\frac{\varphi(y)}{y}\Big).$$

So we need only show that for y as in (3.3),

$$b_W \left(1 - \sigma^{-1} \frac{\varphi(y)}{y} \right) = b_U.$$

The left hand side equals

$$\sum_{j=0}^{d-1} \sigma^{-j} \frac{[W; j, -1, \dots, -k]}{[W; 0, -1, \dots, -k]} - \sum_{j=0}^{d-1} \sigma^{-(j+1)} \frac{[W; j+1, 0, \dots, -(k-1)]}{[W; 1, 0, \dots, -(k-1)]} \frac{\varphi(y)}{y} = \sum_{j=0}^{d-1} \sigma^{-j} \frac{[W; j, -1, \dots, -k]}{[W; 0, -1, \dots, -k]} - \sum_{j=1}^{d} \sigma^{-j} \frac{[W; j, 0, \dots, -(k-1)][U; -1, \dots, -k]}{[W; 0, -1, \dots, -k][U; 0, -1, \dots, -(k-1)]}.$$

Notice that the j=d term in the last sum is 0, and that the j=0 term in the second last sum is 1. For $1 \le j \le d-1$, collecting the terms in σ^{-j} for these two sums, we see that the result will be proved once we check the identity

$$[W; j, -1, \dots, -k][U; 0, -1, \dots, -(k-1)]$$

$$-[W; j, 0, \dots, -(k-1)][U; -1, -2, \dots, -k]$$

$$=[W; 0, -1, \dots, -k][U; j, -1, \dots, -(k-1)].$$

Let w_1, \ldots, w_{k+1} be a basis of W such that w_1, \ldots, w_k is a basis of U. The desired identity is of the form ab-cd=ef, where a,\ldots,f are certain determinants. Now a, c and f are determinants of matrices whose first columns have entries $\varphi^j(w_1), \ldots, \varphi^j(w_{k+1})$ (the last of these not used in f). If we replace these columns by a column vector $\mathbf{x}=(x_1,\ldots,x_{k+1})^t$, we see that ab-cd-ef is linear in \mathbf{x} . When we set $\mathbf{x}=\mathbf{x}_{\nu}=(\varphi^{-\nu}(w_1),\ldots,\varphi^{-\nu}(w_{k+1}))^t$, where $0\leq \nu\leq k$, then a moment's thought shows that ab-cd-ef=0. But Lemma 3.1 shows that the k+1 vectors \mathbf{x}_{ν} are linearly independent. Thus ab-cd-ef equals 0 for any \mathbf{x} , and so, in particular, for $\mathbf{x}=(\varphi^j(w_1),\ldots,\varphi^j(w_{k+1}))^t$.

LEMMA 3.3: If $U \in \Pi_k(\mathbb{F}_{q^d})$, then

(3.5)
$$b_U^{-1} = \frac{Z}{Z-1} \sum_{i=0}^k (-1)^j \frac{[U; 0, -1, \dots, \widehat{-j}, \dots, -k]}{[U; -1, -2, \dots, -k]} \sigma^{-j},$$

where -j indicates that the index -j is omitted.

Proof: Let k = 1, and let $U = \mathbb{F}_q u$. Then $b_u = ub_1 u^{-1}$, so that

$$b_u^{-1} = ub_1^{-1}u^{-1} = u\frac{Z}{Z-1}(1-\sigma^{-1})u^{-1} = \frac{Z}{Z-1}\left(1-\frac{u}{\varphi^{-1}(u)}\sigma^{-1}\right)$$
$$= \frac{Z}{Z-1}\left(1-\frac{[U;0]}{[U:-1]}\sigma^{-1}\right).$$

Suppose now that the formula has been proved for all k-dimensional subspaces of \mathbb{F}_{q^d} , and let $W \in \Pi_{k+1}(\mathbb{F}_{q^d})$. Choose any k-dimensional subspace U of W. Let w_1, \ldots, w_{k+1} be a basis of W such that w_1, \ldots, w_k is a basis of U. By Lemma 3.2, we have

$$b_W = \frac{Z}{Z-1}b_Ub_y$$
 for $y = [W; 0, -1, \dots, -k]/[U; -1, \dots, -k].$

Using the induction hypothesis, we have, writing $(-1)^j C_j$ for the coefficient of σ^{-j} in (3.5),

$$b_W^{-1} = \frac{Z - 1}{Z} b_y^{-1} b_U^{-1} = \frac{Z}{Z - 1} \left(1 - \frac{y}{\varphi^{-1}(y)} \sigma^{-1} \right) \left(\sum_{j=0}^k (-1)^j C_j \sigma^{-j} \right).$$

Multiplying out the second and third factors, we see that the coefficient of $\sigma^{-(k+1)}$ is

$$(-1)^{k+1} \frac{y}{\varphi^{-1}(y)} \varphi^{-1}(C_k) = (-1)^{k+1} \frac{[W; 0, -1, \dots, -k]}{[W; -1, -2, \dots, -(k+1)]},$$

as desired. For $1 \leq j \leq k$, the coefficient of σ^{-j} is

$$(-1)^{j}C_{j} - (-1)^{j-1}\frac{y}{\varphi^{-1}(y)}\varphi^{-1}(C_{j-1}).$$

After a little algebra, we see that this equals the desired value $(-1)^j[W;0,-1,\ldots,\widehat{-j},\ldots,-(k+1)]/[W;-1,-2\ldots,-(k+1)]$ if and only if

$$[U; 0, -1, \dots, \widehat{-j}, \dots, -k][W; -1, -2, \dots, -(k+1)]$$

$$+ [U; -1, -2, \dots, \widehat{-j}, \dots, -(k+1)][W; 0, -1, \dots, -k]$$

$$= [U; -1, -2, \dots, -k][W; 0, -1, \dots, \widehat{-j}, \dots, -(k+1)].$$

The proof of this identity is very similar to the proof of (3.4), and we omit it.

PROPOSITION 3.4: For each $U \in \Pi(\mathbb{F}_{q^d})$, conjugation by b_U is an element of Γ . Let $g_U \in GL(d, \mathbb{F}_q[[Y]])$ denote the image of b_U under the embedding (1.2). Let v_0 be the standard base vertex of the \tilde{A}_n building Δ associated with $\mathbb{F}_q((Y))$. Then for each $k \in \{1, \ldots, n\}$, the type k neighbours of v_0 in Δ are precisely the vertices $g_U v_0$, where $U \in \Pi_k(\mathbb{F}_{q^d})$. The correspondence $U \leftrightarrow g_U v_0$ is an isomorphism of the projective geometries $\Pi(\mathbb{F}_{q^d})$ and $\Pi(v_0)$.

Proof: The first statement is clear from Lemma 2.1, Lemma 3.2 and induction. It is clear from the definition of b_U that g_U has entries in $Z^{-1}\mathbb{F}_q[X] \subset \mathbb{F}_q[[Y]]$, and so $g_UL_0 \subset L_0$. Lemma 3.3 shows that $Yg_U^{-1} = (Z-1)g_U^{-1}$ has entries in $\mathbb{F}_q[X] \subset \mathbb{F}_q[[Y]]$, and so $YL_0 \subset g_UL_0$. We have seen that the norm $N(b_1)$ equals $((Z-1)/Z)^{d-1}$. A simple induction based on Lemma 3.2 implies that $N(b_U) = ((Z-1)/Z)^{d-k}$ if U is k-dimensional. Thus $\det(g_U) = N(b_U)$ has valuation d-k. Thus g_Uv_0 is a neighbour of v_0 of type k. Let $U \in \Pi_i(\mathbb{F}_{q^d})$ and $V \in \Pi_j(\mathbb{F}_{q^d})$, with $U \subset V$. If j = i+1, then g_Uv_0 and g_Vv_0 are incident in $\Pi(v_0)$ by Lemma 3.2. For we can write

$$b_V = \frac{Z}{Z-1} b_U b_y$$
 for some $y \in \mathbb{F}_{q^d}^{\times}$.

Thus

$$d(g_V v_0, g_U v_0) = d(g_U g_y v_0, g_U v_0) = d(g_y v_0, v_0) = 1,$$

by Lemma 2.2. For general j > i, choose any subspaces $U_i \subset U_{i+1} \subset \cdots \subset U_j$ such that $U_i = U$, $U_j = V$, and $\dim(U_{\nu}) = \nu$ for each ν . By the above, $g_{U_{\nu}}v_0$ and $g_{U_{\nu+1}}v_0$ are incident in $\Pi(v_0)$ for $\nu = i, \ldots, j-1$. As $\Pi(v_0)$ is a projective geometry and each $g_{U_{\nu}}v_0$ has type ν , this implies that g_Uv_0 and g_Vv_0 are incident.

Finally, we show that the map $U\mapsto g_Uv_0$ is a bijection $\Pi(\mathbb{F}_{q^d})\to \Pi(v_0)$ by showing that it is injective. We know from Lemma 2.2 that it is a bijection between the 1-dimensional subspaces of \mathbb{F}_{q^d} and the type 1 neighbours of v_0 . Suppose that $V,V'\in\Pi_k(\mathbb{F}_{q^d})$ are distinct, where k>1. Then V contains exactly $N=(q^k-1)/(q-1)$ 1-dimensional subspaces, $U_j,\ j=1,\ldots,N,$ say. Choose a one dimensional subspace U of V' which is not contained in V. If $g_Vv_0=g_{V'}v_0$ were to hold, then g_Vv_0 would be incident in $\Pi(v_0)$ with the N+1 type 1 vertices $g_{U_j}v_0,\ j=1,\ldots,N,$ and $g_Uv_0,$ which is impossible. Thus $g_Vv_0\neq g_{V'}v_0$.

By Proposition 2.2 in [2], we know that the image of Γ in $\operatorname{PGL}(d, \mathbb{F}_q((Y)))$ has a presentation with generators the g_U 's, $U \in \Pi(\mathbb{F}_{q^d})$, and relations (1) $g_U g_V g_W = 1$ for certain $U, V, W \in \Pi(\mathbb{F}_{q^d})$ satisfying $\dim(U) + \dim(V) + \dim(W) = d$ (see [1, §2]), and (2) $g_U g_{\lambda(U)} = 1$ for each $U \in \Pi(\mathbb{F}_{q^d})$, where λ is an involution of $\Pi(\mathbb{F}_{q^d})$ satisfying $\dim(\lambda(U)) = d - \dim(U)$ for each U (see [1, Lemma 2.1]). It is routine to rephrase these statements in terms of the b_U 's:

COROLLARY 3.5: Suppose that U and W are subspaces of \mathbb{F}_{q^d} , with $U \subsetneq W$. Then there is a subspace V of \mathbb{F}_{q^d} such that $\dim(W) = \dim(U) + \dim(V)$ and

$$(3.6) b_W = \frac{Z}{Z-1}b_Ub_V.$$

Moreover, there is an involution λ of $\Pi(\mathbb{F}_{q^d})$ such that $\dim(\lambda(U)) = d - \dim(U)$ for each $U \in \Pi(\mathbb{F}_{q^d})$, and such that

(3.7)
$$b_{\lambda(U)} = \frac{Z - 1}{Z} b_U^{-1}.$$

We omit the proof of Corollary 3.5. In (3.6), we have in general no completely explicit "formula" for V in terms of U and W when $\dim(W/U) > 1$. However, a routine induction on $\dim(W/U)$ shows that, modulo \mathbb{F}_q^{\times} ,

$$[V;0,-1,\ldots,-(j-1)] = \frac{[W;0,-1,\ldots,-(k-1)]}{[U;-j,\ldots,-(k-1)]}.$$

In (3.7), we have no closed formula for $\lambda(U)$, except when $\dim(U) \leq 2$. If $U = \mathbb{F}_q u$ is 1-dimensional, then one can easily show that

$$\lambda(U) = \{x \in \mathbb{F}_{q^d} : \text{Tr}(x/u) = 0\} = u\{1\}^{\perp},$$

where for $S \subset \mathbb{F}_{q^d}$, $S^{\perp} = \{x \in \mathbb{F}_{q^d} : \operatorname{Tr}(sx) = 0 \text{ for all } s \in S\}$. If $U \in \Pi_2(\mathbb{F}_{q^d})$, then one can show that

$$\lambda(U) = [U; 0, -1]\varphi^{-1}(U^{\perp}).$$

In general, there is no simple relationship between $\lambda(U)$ and U^{\perp} . However, (3.7) implies various relations between some of the numbers $[U; m_1, \ldots, m_k]$ and $[\lambda(U); n_1, \ldots, n_{d-k}]$. If we also use the relation

$$[U^{\perp};-k,\ldots,-(d-1)]\theta=[U;0,-1,\ldots,-(k-1)] \qquad \text{modulo } \mathbb{F}_q^{\times},$$

where $\theta = [\mathbb{F}_{q^d}; 0, -1, \dots, -(d-1)]$, which is a consequence of [6, p. 166], we can show that, for any $U \in \Pi_k(\mathbb{F}_{q^d})$,

$$[\lambda(U)^{\perp}; 0, -1, \dots, -(k-1)] = 1/[U; 0, -1, \dots, -(k-1)]$$
 modulo \mathbb{F}_a^{\times} .

Remark 3.6: Recall that the algebra \mathcal{A} was defined using an automorphism φ of \mathbb{F}_{q^d} which generates the Galois group of \mathbb{F}_{q^d} over \mathbb{F}_q , and is therefore of the form $x \mapsto x^{q^k}$, where $1 \le k \le d$ and g.c.d.(k,d) = 1. We therefore have $\phi(n)$ different algebras \mathcal{A} , and so $\phi(n)$ different groups Γ , where ϕ denotes Euler's ϕ -function. Note that if $\mathcal{A} = \mathbb{F}_{q^d}(Z)[\sigma]$ and $\mathcal{A}' = \mathbb{F}_{q^d}(Z')[\sigma']$, where $\sigma x \sigma^{-1} = \varphi(x)$ and $\sigma^d = Z$, while $\sigma' x (\sigma')^{-1} = \varphi^{-1}(x)$ and $(\sigma')^d = Z'$, then there is an isomorphism $\mathcal{A} \to \mathcal{A}'$ mapping Z to 1/Z', σ to $(\sigma')^{-1}$, and x to x for each $x \in \mathbb{F}_{q^d}$. This halves the number of different groups Γ .

In [1], the first author worked with a single algebra $\mathcal{A}_0 = \mathbb{F}_{q^d}(Z_0)[\sigma_0]$ where $\sigma_0 x \sigma_0^{-1} = \varphi_0(x) = x^q$ for $x \in \mathbb{F}_{q^d}$, and where $\sigma_0^d = Z_0$. Notice that there is an algebra homomorphism $T: \mathcal{A} \to \mathcal{A}_0$ mapping σ to σ_0^k (where $\varphi(x) = x^{q^k}$, as above), Z to Z_0^k , and x to x for $x \in \mathbb{F}_{q^d}$. If d = 4 (so that $\phi(d)/2 = 1$) and k = 1, then Z times the elements b_U defined in (3.1) are just the b_U 's defined in [1, §4]. If d = 5 (so that $\phi(d)/2 = 2$) and k = 2, then the image under T of Z times the elements b_U defined in (3.1) are just the b_U 's defined in [1, §4]. If d = 5 and k = 1, elements of $\mathcal{A}_0 = \mathcal{A}$ corresponding to the b_U 's were not found in [1].

Let $\Gamma \leq \operatorname{Aut}(\mathcal{A})$ be as above. If $\beta \in \mathbb{F}_{q^d}^{\times}$ satisfies $\beta^d \in \mathbb{F}_q$, then Lemma 3.1 of [1] gives a way of constructing another \tilde{A}_n -group Γ^{β} from Γ . Using Proposition 2.6 of [1], one may easily realize Γ^{β} as a subgroup of $\tilde{\Gamma}$; one uses the elements $b_U' = b_U \beta^{-\dim(U)}$ of \mathcal{A} , and the fact that $tb_U t^{-1} = b_{tU}$ for $t \in \mathbb{F}_{q^d}^{\times}$.

References

- [1] D. I. Cartwright, Groups acting simply transitively on the vertices of a building of type \tilde{A}_n , in Proceedings of the Conference "Groups of Lie type and their geometries", Como 1993 (W. M. Kantor, ed.), Cambridge University Press, to appear.
- [2] D. I. Cartwright, A. M. Mantero, T. Steger and A. Zappa, Groups acting simply transitively on the vertices of a building of type A

 2 I, Geometriae Dedicata 47 (1993), 143–166.
- [3] D. I. Cartwright, A. M. Mantero, T. Steger and A. Zappa, Groups acting simply transitively on the vertices of a building of type \tilde{A}_2 II: the cases q=2 and q=3, Geometriae Dedicata 47 (1993), 167–226.
- [4] P. M. Cohn, Algebra, Volume 3 (second edition), Wiley, Chichester, 1991.
- [5] N. Jacobson, PI-Algebras, An Introduction, Springer Lecture Notes in Mathematics 441, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- [6] T. Muir, A Treatise on the Theory of Determinants, Dover Publications, New York, 1960.
- [7] M. Ronan, Lectures on Buildings, Academic Press, New York, 1989.

[8] H. Voskuil, *Ultrametric uniformization and symmetric spaces*, Doctoral thesis, Rijksuniversiteit Groningen, Groningen, The Netherlands, 1990.